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Abstract 

Simulations of weak-strong pp collisions with a periodic tune modulation 

show the possibility of beam blowup at sufficiently strong modulation amp- 

litudes. This beam blowup is associated with the appearance of nonrepeatable 

"chaotic" trajectories and occurs when low order resonances are crossed by the 

modulation. The implication of this modulational beam blowup for beam-beam 

limitations and modulation amplitude limitations in pp colliders are discussed. 

Introduction 

In proton-antiproton (pi) collisions in the "Tevatron"' particle tra- 

jectories will be affected by the highly nonlinear force of the "beam-beam" 

interaction, the electromagnetic force field of the opposite beam in the 

collisions. The trajectories between collisions will be subject to tune 

modulation from turn to turn through sources such as power supply ripple or 

synchrotron oscillations with uncorrected chromaticity. Previous investiga- 

tions of the beam-beam interaction by the present authors 2,3,4,5 have con- 

sidered a constant "beam-beam" interaction form and particle transport. In 

this paper we add the complication of tune modulation and investigate its 

effects. 

We approximate particle circulation around the accelerator ring as the 
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product of two transformations; a linear transport around the storage ring 

followed by a nonlinear beam-beam "kick" at the interaction area. 

Transport around the ring can be represented by a 2x2 matrix for both 

transverse (x and y) dimensions: 

f:z... = [::;:I I::I”;][;jefore . (1 
In this linear transport x and y motion are decoupled. vx, v y, B,, By are 

the usual Courant-Snyder tunes and beta-functions. The beam-beam kick can 

be represented as 

= 

Lp~~x,y~ :;cjefore x x 
(2) 

with a similar expression for y, y', 

The product of these transforma,tions is equivalent to integration of 

the equation of motion: 

'4nAvx 
x" tKx(s)x = - B 

X 
Fx(x,y) x 6p(s) 

s, the distance along the storage ring, is the independent variable and 

hp(s) is a periodic delta-function. 

In the present report we choose parameters which approximate the 

conditions' in the Tevatron: AV X = Avy = 0.01, 4, = By = 2m and we choose 

(3) 

(4) 
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with d = 0.0816 mm which is the nonlinear force due to a round, gaussian 

charge distribution of rms radius o. This nonlinear force function does not 

change from turn to turn which means that we use the "weak-strong" approxi- 

mation where the "strong" beam is unaffected by the weak beam. 

To simulate tune modulation, the tunes vx and vy in Equation (1) are 

changed from turn to turn following 

VX =v x 
0 

fax sin wxt 

v =v +a 
Y Y, Y 

sin aYt. 

We have used wx = w 
Y 

in all cases, which is expected for most reasonable 

sources of tune modulation and we have considered two possible relative 

phases: 

and 

aY 
= ax labelled ++ 

aY 
= -ax labelled +-. 

The magnitudes of ax and ay are chosen as equal. We have chosen values of 

ax between 0.001 and .Ol = Av, in agreement with expected values, in the 

present paper. For the frequency w we have chosen a frequency precisely 

one thousandth (.OOl) of the collision frequency. Since the Tevatron 

collision frequency is 50 kHz, the modulation frequency is 50 Hz, quite 

close to expected power supply modulation (60 Hz) as well as the synchrotron 

motion frequency, The modulation is chosen as a precise fraction of the 

collision frequency to simplify computation; the matrix given by (1) can be 

calculated initially for each of the 1000 possible values and stored. This 

eliminates the necessity of recalculating (1) on each turn. 

Possible Sources of Tune Modulation 

(5) 

(6) 

One possible source of tune modulation is power supply ripple. Ripple 

in the power supplies of the focusing and defocusing quadrupoles will cause 
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a ripple in the tunes vx and v 
Y 

, If there are separate focusing and de- 

focusing quad supplies then we expect modulation of the ? type, if they 

are connected to the same supply,modulation of the $ kind. The modulation 

should occur at low order harmonics of 60 Hz. The amplitude of modulation 

is 

6v 6G AI _-_-r 
V G -f 

where G is the magnetic gradient and I is the magnet current. With v = 20 

and 6v = .OOl - .Ol, we find an equivalent power supply regulation 

!& - 5x10-5 _ Gjx10-4 
I ; somewhat larger than that expected at the Tevatron. 

Another possible cause of modulation is synchrotron oscillations coupled 

with uncorrected chromaticity. Synchrotron oscillations modulate particle 

momenta, following 

AP w Ap, sin(vSr+@). 

This leads to tune modulation of the form (z) 

sv, cl v 5 APO 
x x p sin(v,t +$) 

APO 
6vy Lz vysy p - sin(vst+@) 

We expect $7, 10m4 in the Tevatron. E,, cy are the x and y chromaticities: 

5 = E a3 
X vx ap * 

If chromaticity is uncorrected 5, E cy Z -1, The values of 6v(.OOl-.Ol) 

correspond to 151 = (.5-5.) in the Tevatron. The chromaticity should be 

corrected to much less than 1 by sextupoles. 

Thus the modulations expected in the Tevatron should be less than those 

explored in this note. (Other colliding beam machines (e'e-) do have larger 

tune modulations.) The relatively large values of this note are chosen to 

(7) 

(8) 

(9) 
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find limits where large effects can occur. 

Simulation Procedure 

In the simulations a set of 100 initial particle positions are 

generated randomly within a gaussian distribution in the 4-D phase space 

(X,X’,Y,Y’). These are transported through many turns following the 

transformations of Equations (1) and (2) with tunes modulated following 

Equation (5). Every 2000 turns the rms emittances XJ, and R are calculated 

using: 
--_ 

x = 6&$T<(x'-ji')2>' 

MY = 6 .(~-s,)~> <(x'-X+)2>' 

In these simulations 6 million turns (corresponding to 2 minutes Tevatron 

time) are calculated in each case, and 3000 emittance values are generated 

and analyzed statistically. 

"Doubling" times for X,Y and R emittance are obtained from the slopes of 

the best straight line fits f,or XJ and R as functions of time from t = 0, 

using rms emittance values calculated every 2000 turns. 

The straight line fit of the x-emittance values can be written6 as 

where 

X = x+b(t-i) 

x = kZXi 

t = jpt. 

1 lpiti -x i] . b=DEN 

(10) 

(11) 

(12) 

(13) 

(14) 

N is the total number of particles, and 
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DEN = kct; - t-2 (15) 

- i - b(ti - t) 1 
=&T C -X2+b2[;Zt; -t"2) 

c Xiti - j;; . 

The calculated slopes have a statistical error associated with the 

scattering of the points Xi, which is given by 

2 
cb 

sx2 
= N. DEN ' 

(16) 

(17) 

A negative doubling time is obtained if b<O; that is, X is decreasing. 

In these simulations the calculated sl.opesare cumulative slopes, calculated 

by including all emittance values generated from t = 0 up to the measurement 

time. 

Simulation Results 

For our simulations of tune modulation we have chosen initial tunes at 

vx = .3439, vy = .1772, AvBB = .Ol. These are the parameters of Case C of 

Reference 3, which is a case chosen in a tune region free of resonances lower 

than ninth order and showed the greatest stability in the long-time simulations. 

The addition of tune modulation permits the appearance of low order resonances 

in combination with the modulation. Figure 1 shows the "tune-space' near the 

Case C tunes, and one finds third, sixth and eighth order resonances within 

Gv = .Ol of Case C and therefore accessible by tune modulation. 

We have considered lzseparate modulation cases: 

(1) 6v = 0 (no modulation) which is Case C of Reference 3. 

(2) (++) modulation with 6v X = 6v 
Y 

= .OOl, .003, .005, .007, ,009, .Ol. 

(3) (+-) modulation with 6vx = -6vy = .OOl, .003, ,004, .005, .007, .Ol. 
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In Tables l-3 and Figures 2-4 we present results of the (++) simulations 

with 6v = .OD3, 6v = .007, 6v = .OlO. In each case we have simulated 6 

million turns of beam storage, In Tables 4-7 and Figures 5-8 we present 

results of the (t-) simulations with 6v = ,003, .004, .005 and .OlO. 

In the (++) simulations we saw no significant changes in the rms beam 

emittances for 6v < .009. However, for 6v = .Ol some statistically significant 

changes appear. There is a strong anticorrelation between changes in 

x-emittance and changes in y-emittance, as can be seen in Figure 4 and the 

cumulative correlation coefficient of Table 3. There are also statistically 

significant changes in these rms emittances, but the changes are 51% after 

6 million turns, and represent "doubling times" of 20.1 days, only a few 

standard deviations from zero change. 

For the (t-) simulations more dramatic changes occur, For 6v < ,003 

no statistically significant changes occur but for Sv > ,004 there is a fast 

blowup of the beam emittances, with doubling times of fractions of a minute 

rather than days. The blowup is evident within 200,000 turns of particle motion 

and continues throughout the six million turn simulations. 

Our tentative conclusion is that beam blowup can occur when there is tune 

modulation and beam-beam interaction, when the modulation is of adequate 

amplitude. 

Repeatability Experiments 

Our basic test of computational accuracy is a repeatability test. In 

these tests initial particle positions are transported forward N turns, the 

transport transformations are reversed and the particle trajectories are 

returned. Forward and return particle positions are compared. As we dis- 

cussed in a previous paper4"chaotic" trajectories diverge exponentially in 

a repeatability test and the test is a useful tool for distinguishing these 

trajectories, 
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In Table 8 we summarize the results of repeatability tests for 11 tune 

modulation cases. In these, 100 trajectories are transported 100,000 turns 

forward and returned. Most trajectories develop errors of order 10m2' in 

agreement with the expected error for non-chaotic trajectories. However in the 

(t-) simulations large error trajectories appear for 6v > ,004; about lO/lDO for 

6~ = .004, and -5O/lOO for 6v > .005. In the (++) cases no large error tra- 

jectories appear until the largest 6v value (.Ol) where 3-6% are large error. 

Following the analyses of Reference 4 we identify these large error 

trajectories as "chaotic" trajectories. There are some differences between 

this and the previous case of Reference 4. First, the division between 

"chaotic" and non-chaotic cases is not as clearly defined; some trajectories 

with small exponential divergence appear, Second, in this case the chaotic 

trajectories can diverge to large amplitudes. 

We use a strong correlation between beam blowup and the appearance of 

chaotic trajectories, and we can infer that the appearance of chaotic trajec- 

tories is necessary for beam blowup, 

Tune Modulation, Chaotic Trajectories, 
Resonances and Beam Blowup 

In this section we undertake a more systematic discussion on the 

inter-relationships between the topics discussed above: tune modulation, 

beam blowup, low-order resonances and chaotic trajectories. As we mentioned 

above, the addition of tune modulations permits the appearance of low order 

resonances. In Figure 9 we show the tune diagram for (t-) .005 = 6v, a case 

with beam blowup and -40 chaotic trajectories. A box representing the tune 

spread of the beam (Avx = Avy = .Ol) is outlined at the center (6vx = 6v 
Y 

= 0) 

and at the extremes of the tune modulations (6v, = .005, 6v 
Y 

= ,005 and 

6vx = .DO5, 6'vy = .005). The full extent of the modulation is outlined with 

a darkened line. Low order resonances of third, sixth and eighth orders are, 

also indicated by darkened lines within the modulated beam tune spread. 



-9- 

(The other lines are higher order resonances.) 

The appearance of chaotic trajectories in the (+-) simulations is 

definitely correlated with the inclusion of the third and sixth order 

resonances (-vx+2v 
Y 

= 0, 4v,-2v 
Y 

= 1). This can be made more definite 

by considering the progression of (t-) cases 6v = .003, .004 and .005 (see 

Figures 5,6 and 7). At ,003 the resonances barely intersect the edges of 

the tune modulation and do not affect the particle motion; there is no beam 

blow-up. At .004 the resonances do intersect the beam for large amplitude 

particle motions, we find 10% chaotic trajectories and beam blow-up. At 

6v = .005 the resonance line intersects the center of the tune square at the 

extremes of the tune modulation; -4O-50% of the trajectories are chaotic. 

In Figure 10 we show particle tunes averaged over the first thousand 

turns for the 2.005 case, These tunes are calculated by taking the differences 

in the phases 

from turn to turn (see Figure 11). For i an amplitude dependent average 

between b = 6, (at zero amplitude) and D = B* (the matrix B for m amplitude) 

is used. 

The tunes are concentrated near the diagonal Avx = Avy as is expected 

from basic considerations. 

The investigations of particle trajectories find that they can be 

categorized into three distinct groups, 

1. "Non-chaotic" (repeatable) trajectories which do not change their 

mean amplitudes substantially in long-time simulations. 

2. "Chaotic" trajectories which may undergo some change in mean ampli- 

tudes but do not diverge to large amplitudes. 
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3. "Chaotic" trajectories which do diverge to large amplitude. 

In Figure 10 we have identified these three separate types and find 

that they occupy distinct regions in tune space. The largest amplitude 

particles (these are those with largest beam-beam tune shifts) are pre- 

dominantly chaotic and divergent. Intermediate amplitude trajectories 

are chaotic but not divergent. Smaller amplitude particles are non-chaotic. 

This separation is in agreement with an intuitive picture in which 

chaotic trajectories are caused by sweeping of a low order resonance 

through the beam, and only those trajectories which reach an amplitude 

swept by the resonance can be chaotic. 

This picture isconfirmed by consideration of the (t-) .004 case. 

The nine c,haotic, divergent trajectories are among the largest amplitude 

divergent trajectories of the (t-) .005 case and are consistent with the 

observation that the lower amplitude of tune modulation should only "sweep" 

through the largest amplitude particles, These largest amplitude particles 

are also labeled in Figure 10. 

We have also confirmed the hypothesis that tune modulation is necessary 

for the appearance of chaotic, divergent trajectories. We have undertaken 

six million turn simulations at the center (vx = .3439, vy = .1772, Au = .Ol) 

and at the two extremes of the tune modulation, (vx = .3489, vy = .1722, 

Av = .Ol) and (vx = .3389, vy = .1822, Av = .Ol) without modulation. No 

chaotic trajectories and no beam blow-upareseen, even though the extremes 

do contain third or sixth order resonances. 

Discussion of Chaotic Trajectories for (++) Simluations 

For the (++) simulations only the largest amplitude case shows evidence 

of chaotic trajectories and it shows no large beam blow-up (6~ = .Ol). 

In Figure 12 we show the tune diagram for the .Ol modulation case and this 

shows a few low order resonances within the modulation amplitude. 
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Investigation of particle amplitudes indicates that the sixth and third 

order resonances in the lower right of the tune diagram are probably 

associated with these chaotic trajectories, Only largest amplitude par- 

ticles which could reach these resonances are chaotic; and these would 

not reach them at a lower modulation amplitude. Since only a few particles 

can reach these resonances and even these do not cross them at significant 

speeds, there is no beam blow-up in this case. 

Conclusions 

Simulations of the beam-beam interaction with tune modulation find 

that beam blow-up can occur if the modulation sweeps the beam through a 

low order (58th order) resonance. Modulations 2.01 would be forbidden 

by this criterion with a beam-beam tune shift of 2.01, since it is dif- 

ficult to find a region free of low order resonances, No beam blow-up 

should occur at the lower amplitude modulations expected at the Tevatron. 
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Figure Captions 

Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

Figure 6 

Figure 7 

Figure 8 

Figure 9 

Figure 10 

Figure 11 

Tune region near case C 

Results of (++ .003) Simulation 

Results of (++ .007) simulation 

Results of (++ .OlO) simulation 

Results of (+- .003) simulation 

Results of (+- .004) simulation 

Results of (+- .005) simulation 

Results of (+- .OlO) simulation 

Tune region of (+- .005) 

Particle tunes averaged over the first 1000 turns for case 
c k.005) 

Calculation of individual particle tune shifts 

Figure 12 rUne Region of (+k .OjO) 



FigWe i Tune space showing the limits of Case C >?nd how close the corners 
come to the undesirable lines of order 3, 6 ?nd 8. 
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Fig. q Axea of tune sp-lce swept out by 

Figure 9 

Case C-.005: sx = 0.3439 + 0.005 sinp 0 = 2TTn/1000 
JY = 0.1772 - 0.005 sing n = turn number 
nrr = 0.01 

o*1922 - A\\ . L M / \\ \I I\, I \ 

0.1722 
0.3389 0.3589 

92 



1 

Figure 10 

Fig, 10 Tunes averaged over turns 0 to 1000. Case NC-.005 
The lower-left corner corresponds with Q~:, 

yY* 
The upper-right corner corresponds with vx + nu , Jy + Ad. 

Labels8 A Rcveraible and small emittsnce after 6 million turns. 
C Non-reversible and em%11 enittsnce after 6 million turns. 
F Non-reversible and large emitta&e after 6 million turns. 

0 F Also non-revereible for ?0.004 modulation. 

. 



Figure 11 

Individual particle beam-benm tune shift calculation, The total particle tune 
shift fT is calculated by considering motion from the center of one beam-beau kick 
to the center of the next beam-beam kick. 

For the example shown in the first quadrant below. the linear transport /Ao=&*, 
V. = ,U'(Zrr) = 0.167 and the total particle tune shift .4pT = 66', 3T = 0.163 

so the beam-beam kicks,contribute an additional tune AV = 0.016. 
bE 

The B used to scale the vertical dimension is calculated as follows: 
2 ERL 0.02 mm-mrad 

p linear interpolation 0.02 6 E*L- 0.04 mm-mrad 

B= 0.04 4 ER 
2 2 where ,8,ie the matched beta and where L R = .fz + Ey and where 

B -X 
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Figure d&, Area of tune space swept oh by 

Case Cl+.0108 Jx = 0.3439 + 0.010 sin8 9 = 2n-(n-l)/1000 

$Y 
= 0.1772 + 0.010 sing n=turn number 

AV= 0.010 

0.19; 


